I. Examples of Loading Effects

A. Electrical System

- Consider the following electrical system:

\[e_o = \frac{1}{cs} \frac{1}{R} e_i \]

\[\frac{e_o}{e_i} = \frac{1}{Rcs + 1} = G(s) \]

Here we assume that \(l_0 = 0 \).

Complete Description:

KCL \(\Rightarrow \) \(l_i + l_o - Ce_o = 0 \) \(\Rightarrow \) \(l_i = -l_o + Cs e_o \)

KVL \(\Rightarrow \) \(e_i - R l_i - e_0 = 0 \) \(\Rightarrow \) \(e_i = e_0 + R l_i \)

\[
\begin{bmatrix}
e_i \\
l_i
\end{bmatrix} =
\begin{bmatrix}
Rcs + 1 & -R \\
Cs & -1
\end{bmatrix} \begin{bmatrix} e_o \\
l_o
\end{bmatrix}
\]
Now connect 2 identical RC Low-Pass Filters in series

\[I_s \frac{e_0}{e_r} = \left(\frac{1}{RCs+1} \right)^2 ? \quad \text{NO!} \]

Let's derive the overall transfer function for the RC-RC Circuit from first principles.
Redraw it to facilitate analysis.
\[
\begin{align*}
\frac{e_o}{e_e} & = \frac{e_o}{e_A} \cdot \frac{e_A}{e_e} \\
\frac{e_o}{e_A} & = \frac{1/\cs}{R + 1/\cs} = \frac{1}{\rcs + 1} \\
Z_1 : & \quad R \text{ and } C \text{ in series} \\
Z_1 & = R + 1/\cs = \frac{\rcs + 1}{\cs} \\
Z_2 : & \quad Z_1 \text{ and } C \text{ in parallel} \\
Z_2 & = \frac{(Z_1)(1/\cs)}{Z_1 + 1/\cs} = \frac{\rcs + 1}{(\rcs + 2)(\cs)} \\
\frac{e_A}{e_e} & = \frac{Z_2}{R + Z_2} = \frac{\rcs + 1}{(\rcs + 1)^2 + \rcs} \\
\frac{e_o}{e_e} & = \frac{e_o}{e_A} \cdot \frac{e_A}{e_e} = \frac{1}{(\rcs + 1)^2 + \rcs} \\
\end{align*}
\]

\[G(s) \quad G(s) \quad \text{why?} \]

\[\frac{e_o}{e_e} \neq G(s)G(s) \]
B. Mechanical System

- Consider the following mechanical system:

\[f_{e1} \rightarrow m_1 \rightarrow b_1 \rightarrow b_2 \rightarrow K_2 \rightarrow \chi_{02} \rightarrow \chi_{02} \]

\(\chi_{01} = \chi_{e2} \) when connected

Machine-tool slide positioned by a motor

Position-measuring device to be attached to the slide

- Consider each system separately:

\[f_{e1} \rightarrow m_1 \ddot{\chi}_{01} \rightarrow b_1 \chi_0 \rightarrow m_1 \dddot{\chi}_0 + b_1 \chi_0 = f_{e1} \]

\[K_2 \chi_{02} \quad \left(\dddot{\chi}_{e2} - \dddot{\chi}_0 \right) b_2 = K_2 \chi_{02} \]

\[b_2 (\dddot{\chi}_{e2} - \dddot{\chi}_0) \]

\[\frac{\chi_{01}}{f_{e1}} = \frac{1}{m_1 s^2 + b_1 s} = G_1(s) \]

\[\frac{\chi_{02}}{\chi_{01}} = \frac{b_2 s}{b_2 s + K_2} = G_2(s) \]

But \(\chi_{01} = \chi_{e2} \) when connected
\[
\frac{\chi_{02}}{f_{x_1}} = G_1(s) G_2(s) = \frac{\frac{b_2}{b_1} K_2}{b_1 K_2 s^2 + \frac{m_1 K + b_1 b_2}{b_1 K_2} s + 1}
\]

Is This Correct?

- Consider the two systems connected:

 \[
 f_{x_1} \quad \rightarrow \quad m_1 \quad \rightarrow \quad b_1 \chi_{01} \quad \begin{cases} \chi_{01} = \chi_{x_2} \\
 b_2 (\dot{\chi}_{01} - \dot{\chi}_{02}) \end{cases}
 \]

 \[
 \dot{\chi}_{02} = K_2 \chi_{02} \quad \begin{cases} b_2 (\dot{\chi}_{01} - \dot{\chi}_{02}) \end{cases}
 \]

 \[
 m_1 \ddot{\chi}_{01} + b_1 \dot{\chi}_{01} + b_2 (\ddot{\chi}_{01} - \ddot{\chi}_{02}) = f_{x_1}
 \]

 \[
 b_2 (\dot{\chi}_{01} - \dot{\chi}_{02}) = K_2 \chi_{02}
 \]

 Transform and solve for \(\frac{\chi_{02}}{f_{x_1}}\)
\[
\begin{align*}
\left[m_1 s^2 + (b_1 + b_2)s \right] \chi_{01} - \left(b_2 s \right) \chi_{02} &= f_{\chi_1} \\
\chi_{01} &= \left(b_2 s + k_2 \right) \chi_{02} \\
\text{Solve for } \frac{\chi_{02}}{f_{\chi_1}} &= \frac{b_2}{(b_1 + b_2) k_2} \\
\chi_{02} &= \frac{m_1 b_2 s^2 + m_1 k_2 + b_1 b_2 s}{(b_1 + b_2) k_2} + 1 \\
G(s) &= G_1(s) G_2(s)
\end{align*}
\]
C. Hydraulic System

\[q_u - q_o = AH \]
\[h = Rq_o \]

Transform and Solve for \[\frac{q_o}{q_u} \]

\[q_u - q_o = Ah \]
\[h = Rq_o \] \hspace{1cm} \Rightarrow \hspace{1cm} \frac{q_o}{q_u} = \frac{1}{RA_5 + 1} \]

Now consider two tanks interconnected:

\[T_5 \hspace{1cm} \frac{q_o}{q_u} = \frac{1}{(RA_1s + 1)(RA_2s + 1)} ? \]
Write down equations of motion:

\[\begin{align*}
 q_{u} - q &= A_{1} h_{1} \\
 h_{1} - h_{2} &= R_{1} q \\
 q - q_{0} &= A_{2} h_{2} \\
 h_{2} &= R_{2} q_{0}
\end{align*} \]

Transform and solve for \(\frac{q_{0}}{q_{u}}\)

Result:

\[\frac{q_{0}}{q_{u}} = \frac{1}{(R_{1}A_{2}R_{2}A_{2})s^{2} + (R_{1}A_{1} + R_{2}A_{2} + R_{2}A_{1})s + 1} \]

\[= G(s) \]

\[G_{1}(s) = \frac{1}{R_{1}A_{1}s + 1} \quad G_{2}(s) = \frac{1}{R_{2}A_{2}s + 1} \]

\[G(s) \neq G_{1}(s)G_{2}(s) \]
II. Impedance

- When a second device is coupled to a first device at its output, it will draw some power from the first. Definition of this power is impossible in terms of a single variable. Two variables are required.

- A two-port device is one that exchanges energy with others at only two locations (ports).

\[
\begin{align*}
\begin{array}{c}
\text{2-port device 1} \\
\text{2-port device 2}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
f_{x1} \\
e_{x1}
\end{array} \quad & \quad \begin{array}{c}
f_{01} \\
e_{01}
\end{array} & \quad \begin{array}{c}
f_{x2} \\
e_{x2}
\end{array} \quad & \quad \begin{array}{c}
f_{02} \\
e_{02}
\end{array}
\end{align*}
\]

\[
e = \text{effort variable}
\]

\[
f = \text{flow variable}
\]
<table>
<thead>
<tr>
<th>Class of System</th>
<th>Effort Variable</th>
<th>Flow Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Voltage</td>
<td>Current</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Force</td>
<td>Velocity</td>
</tr>
<tr>
<td>Hydraulic</td>
<td>Pressure</td>
<td>Flow Rate</td>
</tr>
</tbody>
</table>

- The product of the two variables at each port (effort x flow) gives the instantaneous power flowing through the port.

\[
\begin{bmatrix} e_i \\ f_i \end{bmatrix} = \begin{bmatrix} G \end{bmatrix} \begin{bmatrix} e_o \\ f_o \end{bmatrix}
\]

\[G = 2 \times 2 \text{ Transfer Function} \]

Assumption: Linear Model for device
Let's derive the Transfer Function Matrix for the 3 Systems discussed.

RC Circuit

\[R \quad C \quad \text{Circuit} \]

\[l_\text{c} \xrightarrow{} R \quad C \quad e_\text{c} \quad \xleftarrow{e_\text{o}} l_\text{o} \]

KCL \Rightarrow l_\text{c} + l_\text{o} - C \dot{e}_\text{o} = 0 \Rightarrow l_\text{c} = -l_\text{o} + C s e_\text{o}

KVL \Rightarrow e_\text{c} - R l_\text{c} - e_\text{o} = 0 \Rightarrow e_\text{c} = e_\text{o} + R l_\text{c}

\[
\begin{bmatrix} e_\text{c} \\ l_\text{c} \end{bmatrix} = \begin{bmatrix} RCS + 1 & -R \\ Cs & -1 \end{bmatrix} \begin{bmatrix} e_\text{o} \\ l_\text{o} \end{bmatrix}
\]

Mechanical System

\[
\begin{bmatrix} f_\text{c} \\ ^m \dot{x}_\text{c} \end{bmatrix} = \begin{bmatrix} 1 & m_1 s^2 + b_1 s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_\text{o} \\ ^m x_\text{o} \end{bmatrix}
\]

\[f_\text{c} - f_\text{o} - b_1 ^m x_\text{o} - m_1 \ddot{x}_\text{c} = 0 \quad \Rightarrow \quad ^m x_\text{c} = x_\text{o} \]
The overall transfer function matrix is:

\[
\begin{bmatrix}
 f_{x1} \\
 \chi_{x1}
\end{bmatrix} = \begin{bmatrix}
 1 & m_1 s^2 + b_1 s \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 & K \\
 -\frac{1}{b_2 s} & \frac{b_2 s + K_2}{b_2 s}
\end{bmatrix} \begin{bmatrix}
 f_{02} \\
 \chi_{02}
\end{bmatrix}
\]
Hydraulic System

\[h_{x1} - h_{01} = R_1 g_{01} \]
\[g_{x1} - g_{01} = A_1 h_{x1} \]

\[
\begin{bmatrix}
 h_{x1} \\
 g_{x1}
\end{bmatrix} = \begin{bmatrix}
 1 & R_1 \\
 A_1 s & A_1 R_1 s + 1
\end{bmatrix} \begin{bmatrix}
 h_{01} \\
 g_{01}
\end{bmatrix}
\]

Similarly,

\[
\begin{bmatrix}
 h_{x2} \\
 g_{x2}
\end{bmatrix} = \begin{bmatrix}
 1 & R_2 \\
 A_2 s & A_2 R_2 s + 1
\end{bmatrix} \begin{bmatrix}
 h_{02} \\
 g_{02}
\end{bmatrix}
\]
The overall transfer function matrix is:

\[
\begin{bmatrix}
 h_{u1} \\
 g_{u1}
\end{bmatrix} =
\begin{bmatrix}
 1 & R_1 \\
 A_1s & A_1 R_1 s + 1
\end{bmatrix}
\begin{bmatrix}
 1 & R_2 \\
 A_2s & A_2 R_2 s + 1
\end{bmatrix}
\begin{bmatrix}
 h_{o2} \\
 g_{o2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 h_{u1} \\
 g_{u1}
\end{bmatrix} =
\begin{bmatrix}
 1 + R_1 A_2 s & R_2 + R_1 + A_2 R_1 R_2 s \\
 (A_1 + A_2) s s + A_1 A_2 R_1 s^2 & A_1 R_2 s
\end{bmatrix}
\begin{bmatrix}
 h_{o2} \\
 g_{o2}
\end{bmatrix}
\]

In each case we see that we can write:

\[
\begin{bmatrix}
 e_u \\
 f_u
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
 e_o \\
 f_o
\end{bmatrix}
\]

\[
e_u = a_{11} e_o + a_{12} f_o
\]

\[
f_u = a_{21} e_o + a_{22} f_o
\]
• For linear systems, with no internal energy sources, the a_{ii}'s are related by:
 \[a_{11}a_{22} - a_{21}a_{12} = 1 \]

Therefore, it takes only 3 of these quantities to completely describe the terminal behavior of any 2-port device, no matter how complex it might be internally.

• The equations
 \[
 e_x = a_{11}e_0 + a_{12}f_0 \\
 f_x = a_{21}e_0 + a_{22}f_0
 \]

are actually a particular pair of a set of 12 possible equations one could write relating the e's and f's of a given 2-port device.
Since any 2 of the variables may be considered as independent variables, we can write:

\[e_x = e_x(e_o, f_0) \quad e_o = e_o(e_x, f_x) \]
\[f_x = f_x(e_o, f_0) \quad f_0 = f_0(e_x, f_x) \]
\[f_0 = f_0(e_x, e_o) \quad e_o = e_o(e_x, f_0) \]
\[f_x = f_x(e_x, e_o) \quad f_0 = f_0(e_x, f_0) \]
\[e_0 = e_0(e_0, f_x) \quad e_x = e_x(e_0, f_0) \]

All of these are potentially useful.

For device #1 we can write:

\[e_{01} = e_{01}(e_{x1}, f_{01}) \]
\[e_{01}(s) = \left. \frac{e_{01}(s)}{e_{x1}(s)} \right|_{f_{01}(s)=0} e_{x1}(s) + \left. \frac{e_{01}(s)}{f_{01}(s)} \right|_{e_{x1}(s)=0} f_{01}(s) \]
\[
\frac{e_{01}(s)}{e_{x1}(s)} \bigg|_{f_{01}(s) = 0} = \text{Unloaded Transfer Function} \quad W_u(s)
\]

\[
\frac{E_{01}(s)}{f_{01}(s)} \bigg|_{e_{x1}(s) = 0} = \text{Generalized Output Impedance} \quad Z_{q_{01}}(s)
\]

- For device #2 we can write:

\[
e_{x2} = e_{x2}(f_{x2}, f_{02})
\]

\[
e_{x2}(s) = \frac{e_{x2}(s)}{f_{x2}(s)} \bigg|_{f_{x2}(s) = 0} + \frac{e_{x2}(s)}{f_{02}(s)} \bigg|_{f_{02}(s) = 0}
\]
\[
\frac{e_{x2}(s)}{f_{x2}(s)} \bigg| f_{o2}(s) = 0 \quad \equiv \quad \text{Generalized Input Impedance} \quad Z_{g2}(s)
\]

\[
\frac{e_{x2}(s)}{f_{o2}(s)} \bigg| f_{i2}(s) = 0 \quad \equiv \quad \text{Generalized Transfer Impedance} \quad Z_{gt2}(s)
\]

- Suppose device #2 has no third device connected at its output and \(f_{o2}(s) = 0 \).
 - When the 2 devices are connected \(e_{o1}(s) = e_{x2}(s) \) and \(f_{o1}(s) = -f_{i2}(s) \).
Combine Equations:

\[e_{o1}(s) = W_u(s) e_{x1}(s) + \frac{Z_{g01}(s)}{Z_{g12}(s)} f_{o1}(s) \]

\[= W_u(s) e_{x1}(s) + \frac{Z_{g01}(s)}{Z_{g12}(s)} \left[-\frac{e_{x2}(s)}{Z_{g12}(s)} \right] \]

\[= W_u(s) e_{x1}(s) + \frac{Z_{g01}(s)}{Z_{g12}(s)} \left[-\frac{e_{o1}(s)}{Z_{g12}(s)} \right] \]

\[e_{o1}(s) + \frac{Z_{g01}(s)}{Z_{g12}(s)} e_{o1}(s) = W_u(s) e_{x1}(s) \]

\[\frac{e_{o1}(s)}{e_{x1}(s)} = W_u(s) \left[\frac{1}{1 + \frac{Z_{g01}(s)}{Z_{g12}(s)}} \right] \]

This equation clearly shows under what conditions we may couple subsystems accurately using the familiar transfer function (here called the unloaded transfer function) method, and what additional subsystem information
(the two impedances) is needed to get accurate coupling when loading is not negligible.

If \(Z_{g12} \gg Z_{g01} \), then the unloaded transfer function is a good approximation to the unloaded transfer function. This approximation may be good over certain ranges of frequency but not others.

- Let's apply this to the 3 examples.

RC-RC Circuit

\[
\begin{bmatrix}
E_{x1} \\
I_{x1}
\end{bmatrix} = \begin{bmatrix}
RCS + 1 & -R \\
Cs & -1
\end{bmatrix} \begin{bmatrix}
E_{01} \\
I_{01}
\end{bmatrix} \quad E_{01} = E_{x2} \\
I_{01} = I_{x2}
\]

\[
\begin{bmatrix}
E_{x2} \\
I_{x2}
\end{bmatrix} = \begin{bmatrix}
RCS + 1 & -R \\
Cs & -1
\end{bmatrix} \begin{bmatrix}
E_{02} \\
I_{02}
\end{bmatrix} \quad I_{02} = 0
\]
\[
\begin{bmatrix}
e_{o1} \\
e_{u1}
\end{bmatrix} =
\begin{bmatrix}
R^2c^2s^2 + 3Rcs + 1 & -R^2c^2 - 2R \\
rc^2s^2 + 2cs & -Rcs - 1
\end{bmatrix}
\begin{bmatrix}
e_{o2} \\
e_{u2}
\end{bmatrix}
\]

with \(e_{u2} = 0 \)

\[
\frac{e_{o2}}{e_{u1}} = \frac{1}{(Rcs + 1)^2 + Rcs}
\]

Using Impedances:

\[
\frac{e_{o1}}{e_{u1}} = W_u(s) \left[\frac{1}{1 + \frac{Z_{g_01}(s)}{Z_{g_22}(s)}} \right]
\]

\[
W_u(s) = \frac{e_{o1}(s)}{e_{u1}(s)} \bigg|_{f_0(s) = 0} = \frac{1}{Rcs + 1}
\]

\[
Z_{g_01}(s) = \frac{e_{o1}(s)}{f_0(s)} \bigg|_{e_{u1}(s) = 0} = \frac{R}{Rcs + 1}
\]
\[
\frac{Z_{g_{12}}(s)}{f_{12}(s)} = \left. \frac{E_{c_{12}}(s)}{f_{12}(s)} \right|_{f_{02}(s)=0} = \frac{RCs+1}{Cs}
\]

Therefore

\[
\frac{e_{0_{1}}}{e_{x_{1}}} = \frac{1}{RCs+1} \left[\frac{1}{1 + \frac{RCs}{(RCs+1)^2}} \right]
\]

This is the loaded transfer function for the first RC Circuit. To get the overall transfer function we multiply this by the ideal transfer function of the second RC Circuit since it is unloaded.

\[
\frac{E_{c_{02}}}{E_{x_{1}}} = \frac{1}{RCs+1} \left[\frac{1}{1 + \frac{RCs}{(RCs+1)^2}} \right] \frac{1}{RCs+1}
\]

\[
= \frac{1}{(RCs+1)^2 + RCs}
\]

Same as found by direct analysis.
Mechanical System

\[
\begin{bmatrix}
 f_{x1} \\
 x_{x1}
\end{bmatrix} =
\begin{bmatrix}
 1 & m_1 s^2 + b_1 s \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 f_{01} \\
 x_{01}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 f_{x2} \\
 x_{x2}
\end{bmatrix} =
\begin{bmatrix}
 1 & K_2 \\
 -\frac{1}{b_2 s} & \frac{b_2 s + K_2}{b_2 s}
\end{bmatrix}
\begin{bmatrix}
 f_{02} \\
 x_{02}
\end{bmatrix}
\]

Desired Transfer Function: \(\frac{x_{02}}{f_{x1}} \)

\(x_{01} = x_{x2} \) when connected

\(f_{01} = f_{x2} \)

Assume \(f_{02} = 0 \), i.e., there is no system connected to the output of system 2.

\[
\frac{x_{02}}{f_{x1}} = \left[\frac{x_{01}}{f_{x1}} \right]_{\text{loaded}} \left[\frac{x_{02}}{x_{x2}} \right]_{\text{unloaded}}
\]
\(\chi_{01} = \chi_{01}(f_{x1}, f_{01}) \)

\[= \frac{\chi_{01}}{f_{x1}} \bigg|_{f_{01}=0} f_{x1} + \frac{\chi_{01}}{f_{01}} \bigg|_{f_{x1}=0} f_{01} \]

\[f_{01} = f_{x2} \} \text{ systems are connected,} \]
\[\chi_{01} = \chi_{x2} \]

\[f_{x2} = f_{x2}(f_{02}, \chi_{x2}) \]

\[= \frac{f_{x2}}{f_{02}} \bigg|_{\chi_{x2}=0} f_{02} + \frac{f_{x2}}{\chi_{x2}} \bigg|_{f_{02}=0} \chi_{x2} \]

\[= \frac{f_{x2}}{\chi_{x2}} \bigg|_{f_{02}=0} \chi_{x2} \quad \text{since } f_{02} = 0 \]
\[= \frac{f_{x2}}{\chi_{x2}} \bigg|_{f_{02}=0} \chi_{01} \quad \text{since } \chi_{01} = \chi_{x2} \]

\[= f_{01} \quad \text{since } f_{01} = f_{x2} \]
Therefore

$$\chi_{01} = \frac{\chi_{01}}{f_{x1}} \left| \begin{array}{c} f_{x1} \\ f_{01} = 0 \end{array} \right| + \frac{\chi_{01}}{f_{01}} \left| \begin{array}{c} f_{x1} \\ f_{01} = 0 \end{array} \right|$$

\[\chi_{x2} \left| \begin{array}{c} f_{x1} \\ f_{02} = 0 \end{array} \right| \chi_{01} \]

$$\chi_{01} = \frac{\chi_{01}}{f_{x1}} \left| \begin{array}{c} f_{x1} \\ f_{01} = 0 \end{array} \right| + \frac{\chi_{01}}{f_{01}} \left| \begin{array}{c} f_{x1} \\ f_{01} = 0 \end{array} \right|$$

\[\chi_{x2} \left| \begin{array}{c} f_{x1} \\ f_{02} = 0 \end{array} \right| \chi_{01} \]

Solve for $\frac{\chi_{01}}{f_{x1}}$:

$$\frac{\chi_{01}}{f_{x1}} = \frac{\chi_{01}}{f_{x1}} \left| \begin{array}{c} f_{x1} \\ f_{01} = 0 \end{array} \right| \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

$$\left[\begin{array}{c} 1 \\ \chi_{x1} \end{array} \right] = \left[\begin{array}{c} 1 \\ m_1 s^2 + b_1 \end{array} \right] \left[\begin{array}{c} f_{01} \\ \chi_{01} \end{array} \right]$$

$$\left[\begin{array}{c} f_{x1} \\ \chi_{x1} \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

$$\left[\begin{array}{c} f_{x2} \\ \chi_{x2} \end{array} \right] = \left[\begin{array}{c} \frac{1}{b_2 s} \\ b_2 s + K_2 \end{array} \right] \chi_{02}$$

Apply this to systems 1 and 2:
\[
\frac{\chi_{01}}{F_{x1}} \bigg|_{F_{01}=0} = \frac{1}{m_1 s^2 + b_1 s} \\
\frac{\chi_{01}}{F_{01}} \bigg|_{F_{x1}=0} = \frac{-1}{m_1 s^2 + b_1 s} \\
\frac{\chi_{12}}{F_{x2}} \bigg|_{F_{02}=0} = \frac{b_2 s + k_2}{k_2 b_2 s}
\]

Combine:

\[
\frac{\chi_{01}}{F_{x1}} = \frac{1}{m_1 s^2 + b_1 s} \left[\frac{1}{\frac{b_2 s + k_2}{k_2 b_2 s}} - \frac{-1}{m_1 s^2 + b_1 s} \right]
\]

\[
= \frac{b_2 s + k_2}{(m_1 s^2 + b_1 s)(b_2 s + k_2) + b_2 k_2 s}
\]

\[
= \text{Loaded Transfer Function for System } \#1
\]
\[
\frac{\chi_{02}}{\chi_{12}} = \frac{b_2 s}{b_2 s + K_2}
\]

\[
= \text{Unloaded Transfer Function for System } \#2
\]

Result:

\[
\frac{\chi_{02}}{f_{\omega_1}} = \frac{b_2 s + K_2}{(m_1 s^2 + b_1 s)(b_2 s + K_2 + b_2 K_2 s)} \cdot \frac{b_2 s}{b_2 s + K_2}
\]

\[
= \frac{b_2}{(b_1 + b_2) K_2}
\]

\[
\frac{m_1 b_2}{(b_1 + b_2) K_2} s^2 + \frac{m_1 K_2 + b_1 b_2}{(b_1 + b_2) K_2} s + 1
\]

Same as obtained previously.
Hydraulic System

\[
\begin{bmatrix}
 h_{x1} \\
 q_{x1}
\end{bmatrix} =
\begin{bmatrix}
 1 & R_1 \\
 A_1 s & A_1 R_1 s + 1
\end{bmatrix}
\begin{bmatrix}
 h_{01} \\
 q_{01}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 h_{x2} \\
 q_{x2}
\end{bmatrix} =
\begin{bmatrix}
 1 & R_2 \\
 A_2 s & A_2 R_2 s + 1
\end{bmatrix}
\begin{bmatrix}
 h_{02} \\
 q_{02}
\end{bmatrix}
\]

\[q_{01} = q_{x2} \] when connected
\[h_{01} = h_{x2} \]

\[h_{02} = 0 \Rightarrow \text{unloaded} \]

Desired Transfer Function: \(\frac{q_{02}}{q_{x1}} \)

From previous analysis:

\[
\left. \frac{q_{02}}{q_{x1}} \right|_{h_{02} = 0} = \frac{1}{(A_1 R_1 s + 1)(A_2 R_2 s + 1) + A_1 R_1 s}
\]

Now use Impedances.
\[q_{01} = q_{01}(q_{\mu 1}, h_{01}) \]
\[= \frac{q_{01}}{q_{\mu 1}} \bigg|_{h_{01} = 0} \frac{q_{\mu 1}}{h_{01}} + \left(\frac{g_{01}}{h_{01}} \right) \bigg|_{q_{\mu 1} = 0} \]

\[q_{\mu 2} = q_{\mu 2}(h_{\mu 2}, h_{02}) \]
\[= \frac{q_{\mu 2}}{h_{\mu 2}} \bigg|_{h_{02} = 0} \frac{h_{\mu 2}}{h_{02}} + \left(\frac{g_{\mu 2}}{h_{02}} \right) \bigg|_{h_{\mu 2} = 0} \]

But: \[h_{02} = 0 \]
\[q_{\mu 2} = q_{01} \]
\[h_{01} = h_{\mu 2} \]

\[q_{01} = \frac{g_{01}}{q_{\mu 1}} \bigg|_{h_{01} = 0} \frac{q_{\mu 1}}{h_{01}} + \left(\frac{g_{01}}{h_{01}} \right) \bigg|_{q_{\mu 1} = 0} \]
\[\frac{g_{\mu 2}}{h_{\mu 2}} \bigg|_{h_{02} = 0} \]
Solve for $\frac{g_{01}}{g_{21}}$:

\[
\frac{g_{01}}{g_{21}} = \frac{g_{01}}{g_{21}} \left| \begin{array}{c}
\frac{g_{01}}{h_{o1}} = 0 \\
1 = 1 - \frac{g_{01}}{h_{o1}} g_{21} = 0 \\
\frac{g_{12}}{h_{o2}} = 0 \\
\frac{g_{12}}{h_{o2}} = 0
\end{array} \right.
\]

\[
\frac{g_{01}}{g_{21}} \left| \begin{array}{c}
\frac{g_{01}}{h_{o1}} = 0 \\
1 = A_1 R_1 s + 1
\end{array} \right.
\]

\[
\frac{g_{01}}{g_{21}} \left| \begin{array}{c}
\frac{g_{01}}{h_{o1}} = 0 \\
1 = -A_1 s
\end{array} \right.
\]

\[
\frac{g_{12}}{h_{o2}} = \frac{A_2 R_2 s + 1}{R_2}
\]

\[
\frac{g_{12}}{h_{o2}} = \frac{A_2 R_2 s + 1}{R_2}
\]
\[
\frac{g_{01}}{g_{11}} = \frac{1}{A_1 R_1 s + 1} \left[\frac{1}{1 - \frac{-A_1 s}{A_1 R_1 s + 1} - \frac{A_2 R_2 s + 1}{R_2}} \right]
\]

\[
\frac{g_{02}}{g_{12}} = \frac{g_{01}}{g_{11}} \quad \text{Loaded}
\]
\[
\frac{g_{02}}{g_{12}} = \frac{g_{02}}{g_{12}} \quad \text{Unloaded}
\]

Note that \(g_{01} = g_{12} \)

\[
\frac{g_{02}}{g_{12}} \bigg|_{h_02 = 0} = \frac{1}{A_2 R_2 s + 1}
\]

Result:
\[
\frac{g_{02}}{g_{12}} = \frac{1}{A_1 R_1 s + 1} \left[\frac{1}{1 + \frac{A_1 R_2 s}{(A_1 R_1 s + 1)(A_2 R_2 s + 1)}} \right] \frac{1}{A_2 R_2 s + 1}
\]

Same as previously determined.
III. Practical Application

- In equipment involving diverse technologies, major subsystems may be manufactured by different contractors at remote locations, with subsystems being brought together at a single final assembly point only after each has been individually completed.

- Experimental studies of the complete system cannot be performed until final assembly. Discovery of design faults at this late stage can cause severe economic and scheduling problems.

- Capability for experimental testing of each subsystem at the respective manufacturer’s facility and proper coupling of these results to predict behavior of the assembled system can be a valuable tool.
Consider the following physical situation:

Motor produces vibration-exciting dynamic forces f_{a1} at location A.

Electronic package at location B can withstand only limited vibration.

Determine the force f_{a2} that will be applied to the electronics package when it has been connected.

Force f = f_{a1}

Velocity v = v_{a1}
• It is preferable to run separate vibration tests on each subsystem and then calculate from these measurements what the force will be.

• Assume that the frequency spectrum of the input force f_{x_1} is known from theory or experiment.

\[
\text{Problem: Find } \frac{f_{x_2}}{f_{x_1}}(s) \text{ for the loaded condition.}
\]

$f_{x_2} = f_{x_1}$ when the subsystems are joined.

$f_{x_2} = 0$ since the electronics package is allowed to vibrate freely.

$\nu_{01} = -\nu_{12}$ when the subsystems are joined.
\[f_{01} = f_{01} (f_{x_1}, v_{01}) \]
\[f_{01} = \frac{f_{01}}{f_{x_1}} \bigg|_{v_{01}=0} f_{x_1} + \frac{f_{01}}{v_{01}} \bigg|_{f_{x_1}=0} v_{01} \]

\[f_{x_2} = f_{x_2} (v_{x_2}, f_{02}) \]
\[f_{x_2} = \frac{f_{12}}{v_{x_2}} \bigg|_{f_{02}=0} v_{x_2} + \frac{f_{12}}{f_{02}} \bigg|_{v_{x_2}=0} f_{02} \]

Combine:
\[f_{01} = \frac{f_{01}}{f_{x_1}} \bigg|_{v_{01}=0} f_{x_1} + \frac{f_{01}}{v_{01}} \bigg|_{f_{x_1}=0} f_{01} \left[-\frac{f_{12}}{v_{x_2}} \bigg|_{v_{x_2}=0} f_{02} = 0 \right] \]

\[\beta + f_{x_2} = f_{01} \]
$$\frac{f_{01}}{f_{u1}} = \left[\frac{1}{\left(\frac{f_{01}}{v_{01}} \right)_{f_{u1}=0}} \right] + \left(\frac{\frac{f_{12}}{v_{12}}}{f_{u2}} \right)_{f_{02}=0}$$

Experimental Measurements needed to predict coupled-system response.